Эффект Моцарта: музыка помогает учиться или мешает?

Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.

На ошибках правда учатся? Исследователи уверяют, что нет — но это можно исправить

Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.

Роль проблемных заданий в формировании вычислительных навыков у младших школьников

Материалы » Проблемные задания как средство формирования вычислительных навыков у младших школьников на уроках математики » Роль проблемных заданий в формировании вычислительных навыков у младших школьников

Страница 3

Обучение младших школьников решению проблемных заданий включает пооперационное овладение ими необходимыми мыслительными действиями посредством выполнения логических упражнений на сравнение, группировку и классификацию явлений, на умение выделять главное, определять существенные и несущественные признаки понятий, делать самостоятельные выводы, аргументировать их.

Таким образом, проблемное задание – необходимый компонент процесса обучения, целью которого является развитие мышления учащихся [51, c.52].

Не случайно, в учебниках «математика» (автор проф. Н.Б. Истомина) каждая новая тема начинается с задания, которое включает ученика в познавательную деятельность, в процессе которой у него возникает потребность в усвоении нового знания.

Необходимым условием выполнения этих заданий является активное использование учащимися приёмов умственной деятельности (анализ, синтез, сравнение, обобщение). Выполняя мотивационную функцию, проблемные задания на этом этапе позволяют повторить ранее усвоенные вопросы, подготовив учеников к усвоению нового материала, и сформулировать проблему, с решением которой связано «открытие» нового знания.

Например, при изучение темы «Деление суммы на число» можно предложить учащимся такие задания:

- Догадайся, по какому правилу записаны выражения в каждом столбике. Вычисли их значения.

54:6 56:772:8

(36+18):6(42+14):7 (24+48):8

36:6+18:642:7+14:724:8+48:8

С одной стороны, задание понятно учащимся и они могут приступать к его выполнению. С другой стороны, ученикам предложено «открыть» правило, по которому составлены столбики выражений, что возможно только в результате анализа через синтез, сравнение и обобщение. Это правило связано с изучением нового, которое пока неизвестно учащимся. Задание только подготавливает их к «открытию» этого нового.

Как отмечает А.М. Матюшкин, для разработки проблемных ситуаций существенным является тот факт, что понятие «возможностей познавательной деятельности» противоречиво. Так как, с одной стороны, процесс мышления возникает в результате отсутствия выполнения действий в некоторых новых условиях известными способами, с другой стороны, процесс мышления осуществляется только при наличии таких возможностей, которые обеспечивают выполнение действий, позволяющих проанализировать предъявляемые новые требования или новые условия действий [35, c. 49].

Интересен и тот факт, что в контексте нового знания возникает возможность повторить ранее изученный материал (таблицу умножения, правила порядка выполнения действий, представление числа в виде суммы двух слагаемых). Конечно, не все ученики могут после выполнения этого задания сформулировать самостоятельно свойство деления суммы на число.

Поэтому учащимся предлагается записать столбики выражений по тому же правилу для случаев 36:4, 48:6 и т.д.

Выполняя это задание, учащиеся осознают способ действия (надо делимое представить в виде суммы двух слагаемых, каждое из которых делится на данное число).

Осознание способа действия позволяет учащимся самостоятельно представить числа 48, 36 в виде суммы двух слагаемых, каждое их которых делится на 6.

Казалось бы способ действия ясен. Но автор предлагает учащимся задание, которое сталкивает их с новой проблемой, а именно:

- Чем похожи выражения в каждой паре? Чем отличаются?

(42+14):7(24+48):8

(40+16):7(22+50):8-

Анализируя пары выражений, учащиеся обнаруживают, что в первом выражении каждой пары можно воспользоваться открытым способом действия, а во втором выражении нельзя.

На этом проблемы не заканчиваются, и учащимся предлагается следующее задание:

- Какие из данных чисел можно записать в виде суммы двух слагаемых, каждое из которых делится на 6, а какие нельзя:

36, 48, 52, 28, 24, 38, 56, 54, 6.

Задание опять создаёт проблемную ситуацию, в которой присутствуют все необходимые компоненты.

Страницы: 1 2 3 4

Новые статьи:

Современные методики обучения азбуке
На сегодняшний день выделяют несколько новаторских авторских методик: методика Монтессори, Домана, Зайцева, Тюленева, Воскобовича, Кушнира. Методика Монтессори. Монтессори-метод универсален. С его помощью можно научить ребенка писать, считать, развить общую эрудицию, логику, способность к аналитиче ...

Система дидактических игр и упражнений, направленных на речевое развитие детей раннего возраста
Овладение родным языком, развитие речи является одним из самых важных приобретений ребенка в дошкольном детстве и рассматривается в современном дошкольном воспитании как общая основа воспитания и обучения детей. Развитие речи самым тесным образом связано с развитием сознания, познанием окружающего ...

Методы адаптивного физического воспитания детей с детским церебральным параличом
На протяжении многих лет органы здравоохранения, по существу, не занимались организацией медицинской помощи этим детям, так как большинство из них рассматривалось как неперспективные для терапии, а в связи с этим и не создавались специализированные учреждения для их лечения, не готовились квалифици ...

Как Тейлор Свифт стала человеком года... в образовании

Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.

Разделы

Copyright © 2024 - All Rights Reserved - www.alfaeducation.ru