Эффект Моцарта: музыка помогает учиться или мешает?

Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.

На ошибках правда учатся? Исследователи уверяют, что нет — но это можно исправить

Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.

Понятие вычислительного навыка. Психолого-педагогические и методические аспекты формирования вычислительных навыков младших школьников

Материалы » Проблемные задания как средство формирования вычислительных навыков у младших школьников на уроках математики » Понятие вычислительного навыка. Психолого-педагогические и методические аспекты формирования вычислительных навыков младших школьников

Страница 2

Таким образом, можно сказать, что приём вычисления над данными числами складывается из ряда последовательных операций, выполнение которых приводит к нахождению результата требуемого арифметического действия над этими числами; причём выбор операций в каждом приёме определяется теми теоретическими положениями, которые используются в качестве теоретической основы.

Вычислительный навык - это высокая степень овладения вычислительными приёмами. Приобрести вычислительные навыки - значит для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результат арифметического действия и выполнять эти операции достаточно быстро.

В большинстве случаев уже в начальных классах школы для нахождения результата арифметического действия можно использовать в качестве теоретической основы различные теоретические положения, что приводит к разным приёмам вычислений.

Например:

1. 15∙6=15+15+15+15+15+15=90;

2. 15∙6=(10+5)∙6=10∙6+5∙6=90;

3. 15∙6=15∙(2∙3)=(15∙2)∙3=90.

Теоретической основой для выбора операций, составляющих первый из приведённых приёмов, является конкретный смысл действия умножения; теоретической основой второго приёма - свойство умножения суммы на число, а третьего приёма - свойство умножения числа на произведение. Операции, составляющие приём вычисления, имеют разный характер. Многие из них сами являются арифметическими действиями. Эти операции играю особую роль в процессе овладения вычислительными приёмами: выполнение приёма в свёрнутом плане сводится к выделению и выполнению именно операций, являющихся арифметическими действиями. Поэтому операции, являющиеся арифметическими действиями, можно назвать основными. Например, для случая 16?4 основными будут операции: 10*4=40, 6*4=24, 40+24=64. Все другие операции - вспомогательные.

Число операций составляющих прием, определяется, прежде всего, выбором теоретической основы вычислительного приема. Например, при сложении чисел 57 и 25 в качестве теоретической основы может выступать свойство прибавления суммы к числу, тогда прием будет включать три операции: замена числа 25 суммой разрядных слагаемых 20 и 5, прибавление к числу 57 слагаемого 20 и прибавление к результату, к 77, слагаемого 5; если же теоретической основой является свойство прибавления суммы к сумме, то прием для того же случая будет включать пять операций: замена числа 75 суммой разрядных слагаемых 50 и 7, замена числа 25 суммой разрядных слагаемых 20 и 5, сложение чисел 7 и 5, сложение полученных результатов 70 и 12. Число операций зависит также от чисел, над которыми выполняются арифметические действия.

Число операций, выполняемых при нахождении результата арифметического действия, может сокращаться по мере овладения приемом. Например, для случаев вида 8+2 на начальной стадии формирования навыка ученик выполняет три операции: замена числа 2 суммой 1 и 1, прибавление числа 1 к 8 , прибавление числа 1 к результату, к 9. Однако после заучивания таблицы сложения ученик выполняет одну операцию - он сразу связывает числа 8 и 2 с числом 10. Как видим, здесь прием как бы перерастает в другой.

Общеизвестно, что теоретической основой вычислительных приёмов служат определения арифметических действий, свойства действий и следствия, вытекающие из них. Имея это в виду и принимая во внимание методический аспект, можно выделить группы приёмов в соответствии с их общей теоретической основой. Существуют различные классификации вычислительных приёмов. Рассмотрим более детально классификацию вычислительных приёмов, предложенную Бантовой М.А., основанием которой является общность теоретической основы вычислительных приёмов, изучаемых в начальных классах [7, c. 39].

Данную классификацию мы представили в виде таблицы.

Классификация вычислительных приёмов по общности теоретической основы.

Таблица 1

Теоретическая основа вычислительных приёмов

Устные

Письменные

табличные

внетабличные

1. Конкретный смысл арифметических действий

а+2,3,4;2·3 и т.п.

Использование табличных и внетабличных приемов для случаев письменного сложения и вычитания, умножения и деления

2. Свойства арифметических действий

а+5,6,7,8,9; 9+6, 15-7 и т.д.

54+2; 54+20; 27+3; 48-30, 48-3, 30-6, 47+5, 42-5, 40+16, 40-16, 45+12, 45-12, 65+26, 72-34, 14·4; 4·14, 46:2, 70:2, 81:3 и т.д.

3. Связи между компонентами и результатами арифметических действий

а – 5,6,7,8,9; 21:3 и т.д.

60:30; 54:18 и т.д.

4. Нумерация чисел

а+1

700+40, 740+8, 700+48, 748-8, 748-40, 748-48, 748-700

6. Правила

а+0; а·1; а:1; а·0; 0:а

Страницы: 1 2 3 4 5 6

Новые статьи:

Индивидуальный подход в обучении
Каждый ученик – единственный и неповторимый в своей индивидуальности. Индивидуальность выражается в индивидуальных особенностях. Возникновение индивидуальных особенностей (различий) связано с тем, что каждый человек проходит свой особый путь развития, приобретая на нем различные типологические особ ...

Анализ учебника "Математика" для 6 класса Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач для формирования прикладных умений
На основе выделенных действий, характерных для этапов формализации и интерпретации, проанализируем учебник Г.В. Дорофеева, Л.Г. Петерсон с точки зрения наличия задач, применяемых для формирования прикладных умений учащихся 6 класса. Первое действие - замена исходных терминов выбранными математическ ...

Психолого-педагогические проблемы перехода школьников с первой на вторую ступень обучения
Переход учащихся из начальной школы на 2 ступень обучения предъявляет высокие требования к интеллектуальному и личностному развитию, к степени сформированности у них определённых учебных знаний и учебных действий, к уровню развития произвольности психических процессов и способности к саморегуляции. ...

Как Тейлор Свифт стала человеком года... в образовании

Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.

Разделы

Copyright © 2025 - All Rights Reserved - www.alfaeducation.ru