Эффект Моцарта: музыка помогает учиться или мешает?

Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.

На ошибках правда учатся? Исследователи уверяют, что нет — но это можно исправить

Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.

Понятия «одаренность» и «способности»

Страница 2

В работе Б.М. Теплова "Способности и одаренность" он указывает: "При установлении основных понятий об одаренности наиболее удобно исходить из понятия способность. Три признака как, мне кажется, всегда заключаются в понятии способность .

Во-первых, под способностями разумеются индивидуально-психологические особенности, отличающие одного человека от другого .

Во-вторых, способностями называют не всякие вообще индивидуальные особенности, а лишь такие, которые имеют отношение к успешности выполнения какой-либо деятельности .

В-третьих, понятие способность не сводится к тем знаниям, навыкам или умениям, которые уже выработаны у данного человека".

Действительно, большинство приведенных выше определений понятия одаренность трактуется с использованием слова «способности». Таким образом, понятие способности, на наш взгляд, требует более подробного рассмотрения.

Способности

«Способности, индивидуальные особенности личности, являющиеся субъективными условиями успешного осуществления определённого рода деятельности. Не сводятся к знаниям, умениям и навыкам; обнаруживаются в быстроте, глубине и прочности овладения способами и приёмами деятельности. Высокий уровень развития способности выражается понятиями таланта и гениальности», Большая Советская Энциклопедия [7].

Понятие таланта уже было рассмотрено в первом пункте. Понятие же гениальности подробно описано в Большом психологическом словаре: «Гениальность – высшая степень творческих проявлений личности, выражающаяся в творчестве, имеющем выдающееся значение для жизни общества».

«Способность – это такая деятельность, которая ориентирована на то существенное, что лежит в основе большого числа частных явлений. В силу этого тот, кто овладел такого рода деятельностью, в дальнейшем без всякого обучения успешно справляется с любым частным явлением данного класса», Н. Талызина.

«Задатки – врожденные, физиологические особенности человека, которые служат основой развития способностей… Способности – это формирующиеся в деятельности на основе задатков индивидуально-психологические особенности, отличающие одного человека от другого, от которых зависит успешность деятельности», Б.М. Теплов [54].

«Потенциально из задатков может быть создано столько работающих способностей, сколько существует каналов связи между окружающей средой и человеком с его внутренним миром. Реально – в зависимости от организации учения и деятельности человека на жизненном пути», В.В. Клименко, психолог.

«Развиваясь на основе задатков, способности являются все же функцией не задатков, а развития, в которое задатки входят как исходный момент, как предпосылки», Б.Г. Ананьев, психолог.

«Психическое развитие детей, обладающих выдающимися способностями, характеризуется некоторыми специфическими особенностями по сравнению с развитием их «заурядных» сверстников. Одаренные дети часто страдают от недостатка синхронии в темпах развития, интенсивное развитие одного вида одаренности может сопровождаться замедленным развитием другого», Ю.Д. Бабаева, психолог.

«Способности – это свойства функциональных систем, реализующих отдельные психические функции, которые имеют индивидуальную меру выраженности, проявляющуюся в успешности и качественном своеобразии освоения и реализации деятельности… Специальные способности есть общие способности, приобретшие черты оперативности под влиянием требований деятельности», В.Д. Шадриков, психолог.

В рамках нашей работы целесообразно обратиться к раскрытию понятия специальных, а, именно, математических способностей.

Математические способности

Российский психолог В.А. Крутецкий предлагает следующее определение специальных способностей: «Специальные способности (математические) – это индивидуально психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

Для раскрытия сущности математических способностей В.А. Крутецкий выделяет две группы свойств: 1) общие свойства личности; 2) свойства «математического ума». По данным исследований В.А. Крутецкого, к первой относятся такие качества математических способностей как целеустремленность, увлеченность математикой, «своеобразную любовь к математическим символам». Ко второй – своеобразная любовь к обобщению, способность «видеть общее в разных явлениях», «устанавливать связь разнородных явлений», «умение видеть главное, сущность вопроса», «способность прийти от частного к общему». Логичность мышления, умение выводить логические следствия, точность, сжатость, четкость мышления, свойственная математикам, «потребность искать наиболее изящное решение», богатая фантазия, «способность мыслить, опуская многие звенья рассуждений», «характерная для школьного возраста склонность производить формальные операции по определенным правилам».

Страницы: 1 2 3 4

Новые статьи:

Методы выявления и диагностики одаренности
В настоящее время существуют два основных взгляда на процесс установления одаренности. Один из них основан на системе единой оценки. Второй – на системе комплексной оценки. В рамках первого из указанных подходов в качестве количественного показателя, характеризующего индивидуальный уровень интеллек ...

Содержание, функции, уровни развития сюжетно-ролевой игры
Говоря о содержании сюжетно-ролевой игры, следует различать ее сюжет и содержание. Сюжет игры – это та область действительности, которая воспроизводится детьми в игре. На сюжеты игр решающее влияние оказывает окружающая ребенка действительность. Действительность, в которой живет и с которой сталкив ...

Содержание работы с источниками на уроках истории творческого уровня
Дальнейшее развитие традиционной модели обучения нашло свое отражение в работах Н.Г. Дайри. В его монографии нашло выражение развитие мысли о необходимости знакомить учащихся с методами современной исторической науки, приемами самостоятельного познания, конкретизируется их содержание. В работах Дай ...

Как Тейлор Свифт стала человеком года... в образовании

Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.

Разделы

Copyright © 2024 - All Rights Reserved - www.alfaeducation.ru