Учёные десятилетиями пытаются ответить на вопрос, полезно ли включать фоновую музыку на учебных занятиях. Рассказываем, что об этом известно.
Многие преподаватели и тренеры убеждены в учебной пользе от провалов и неудач. Но чтобы эта польза действительно была, нужно соблюсти ряд условий.
Математические приемы в физике учитель использует весьма часто:
- для выражения законов в общей и точной форме;
- для вывода тех или иных закономерностей из некоторых теоретических предпосылок;
- для преобразований выведенных формул в другие;
- для нахождения таких величин, измерение которых непосредственно невозможно;
- при разнообразных расчетах и решении задач.
Математический язык при изучении физики неизбежен как средство изящнейшего выражения законов и кратчайшего выражения законов из опытных исследований, для теоретического обоснования ряда основных положений.
Математикой учителю широко приходится пользоваться при решении физических задач. С самого начала изучения курса физики учащиеся приучаются к пользованию математическими символами и к буквенным формулам. После изучения определенного курса математики учащиеся без труда воспринимают, что математическая формула служит для более краткой, сжатой записи соотношения между физическими величинами, а затем и для более удобного производства вычислений.
Конечно, учителю приходится приучать учащихся вкладывать в математические обозначения реальное содержание физического смысла.
В старших классах роль математики в преподавании физики значительно повышается. Здесь, наряду с экспериментальным изучением физических явлений, учитель физики может при исследовании физических явлений широко применять и математический анализ, поскольку это возможно по уровню математической подготовки учащихся.
Например, в курсе физики X класса при изучении темы «Гармонические колебания» учащиеся уже знают из курса алгебры за IX класс, как связаны между собой ускорение и координата, скорость и координата, т.е., что мгновенная скорость представляет собой производную координаты по времени, а ускорение – вторая производная координаты по времени.
Отсюда делается вывод: согласно этому уравнению при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.
Далее учитель опирается на математическое положение о том, что функция синус и косинус обладают тем свойством, что вторая производная функции пропорциональна самой функции, взятой с противоположным знаком. Значит, координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса. И отсюда дается определение гармонических колебаний. Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями. Затем гармонические колебания записываются с помощью косинуса и синуса. Смещение колеблющейся точки в любой момент времени:
Проектирование целей обучения математике, направленных на развитие одаренных
учащихся
На основе теории, рассмотренной в первой главе можно сформулировать следующие основные положения методики развития одаренных детей в процессе обучения математике: - Диагностика развития одаренных учащихся должна осуществляться на основе системы комплексной оценки. Результаты диагностики должны испо ...
Психологическая модель эффективной деятельности учителя физической
культуры
физкультура учитель воспитание Труд учителя физической культуры является сложным и многообразным. Он должен быть сам всесторонне подготовлен физически (быть стройным, подтянутым, опрятно одетым), знать теорию и практику выполнения физических упражнений, владеть методикой обучения. Современный учите ...
Сущность химического эксперимента
Химия – наука экспериментальная, поэтому химический эксперимент органично вплетается в ткань всего школьного курса. Хорошо подобранные опыты позволяют наглядно отразить связь теории и эксперимента и на практике убедиться в действенности законов химической науки и возможности научного предвидения. И ...
Ей уже посвящают учебные курсы в Гарварде, Стэнфорде и других известных вузах! В том числе — юридические и предпринимательские. Рассказываем, почему.